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Abstract

This article introduces the Jeans stability criterion for interstellar clouds from a non-relativistic point of
view. Three different approaches to deriving similar forms of the criterion are presented.
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1 Introduction

Molecular clouds (MC) are interstellar clouds, consisting mainly of molecules (e.g. H2). Their typical temper-
atures vary in the order of 10 K, their densities in the order of 10−19 Kg ·m−3.
Molecular clouds are believed to be an important source of star formations, which take place as they collapse
under their internal gravitational force. These collapses can be triggered by gravitational instabilities and
perturbations, shock waves from supernova explosions or even strong radiation pressure of nearby stars. Their
typical lifetime is in the order of their free-fall time-scale, that is, just a few million years, and it is believed
that once molecular clouds are formed, they lead to star formations quite quickly.

Of particular interest are Giant molecular clouds (GMC), which can reach diameters of up to 102 parsecs and
masses up to 106M�. As a consequence, they are birthplace of big star clusters and current star formations can
often be observed within them. A well known GMC is the Orion Molecular Cloud.

Figure 1.1: Composite image of Cepheus B, a GMC about
2400 Lj away. Red, green & blue data is in infrared, violet
in X-Ray spectrum. The image span is about 3 pc.[6]

In the following, we shall describe a simple, well known criterion for the stability of clouds, from a non-relativistic
point of view. This so called Jeans criterion was first derived by Sir James Jeans, who showed that a cloud
of given density could, at sufficiently low temperature and sufficiently big diameter, collapse under its internal
gravitational pressure.

The material for the following article, was taken mainly from Kippenhahn &Weigert[1], Phillips[2] and Longair[4].

2 The Jeans Criterion

Dating back to the work of Jeans, the problem of growth of small gravitational perturbations is of central
importance in understanding stability of MCs. As it turns out, wether a MC collapses into a star or not, highly
depends on its dimensions, density ρ and temperature T . Two of the key concepts arising in the treaty of these
conditions, are the so called Jeans length and Jeans mass.

Non-relativistic investigations result in a Jeans length proportional to cs · (Gρ)−
1
2 , where cs is the (isothermal)

speed of sound, which describes the maximum perturbation length (or GMC diameter), for which perturbations
remain oscillations, or for which, mass aggregations are stable for that matter.

There are quite a few different models one may use to obtain this characteristic length, each providing a different
insight into the subject. In the following, we shall illustrate 3 of them.
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2.1 The Jeans stability criterion for gravitational perturbations

We shall consider small gravitational perturbations on the background of an inviscid fluid with density distri-
bution ρ, velocity distribution v, temperature distribution T and pressure distribution p. Φ shall denote the
gravitational potential and shall, together with p, be the sole source of forces on the fluid.

Beginning with the Euler equations of motion

∂v

∂t
+ (∇v) · v = −1

ρ
∇p−∇Φ , (2.1)

the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0 , (2.2)

Newton’s law

∆Φ = 4πGρ (2.3)

and the equation of state

p = p(ρ, T ) (2.4)

we assume:

(i) ρ, p,v,Φ to be static solutions of eq. (2.1), (2.2), (2.3) and (2.4).

(ii) T, ρ to be constant (over space).

(iii) W.l.o.g. v = 0.

Now, for small, isothermal perturbations δv, δρ, δp, δΦ ∼ O(ε) (ε: scaling parameter) these equations lead to

∂δv

∂t
= −1

ρ
∇δp+

δρ

ρ2
∇p−∇δΦ +O(ε2)

∂δρ

∂t
+ ρ · (∇ · δv) = O(ε2) (2.5)

and

∆δΦ = 4πGδρ . (2.6)

Using ∇p = c2s∇ρ and δp = c2sδρ, with c2s :=
(
∂p
∂ρ

)
T :const

as the isothermal speed of sound, we obtain

∂δv

∂t
= −∇

(
c2s
δρ

ρ
+ δΦ

)
+O(ε2) (2.7)

Taking the divergence of (2.7) and using eq. (2.5) & (2.6), we get

− ∂2

∂t2
δρ

ρ

(2.6)
=

∂

∂t
(∇ · δv) +O(ε2)

(2.6)
= −c2s∆

(
δρ

ρ

)
− 4πGδρ+O(ε2), (2.8)

or equivalently

∂2δρ

∂t2
= c2s∆δρ+ 4πGρ · δρ+O(ε2). (2.9)

Ignoring the 2nd order term O(ε2), we make the ansatz δρ ∼ exp [i(kx− ωt)] of a plane wave and obtain

ω2 = c2sk
2 − 4πGρ (2.10)
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as necessary & sufficient condition for solvability. Eq. (2.10) is the dispersion relation for plane-wave pertur-
bations. Depending on the background density and wavelength λ = 2π/ ‖k‖, ω may become real or imaginary,
corresponding to oscillating or exploding/imploding solutions of (2.9) respectively. The wavelength limit

λJ = cs ·
√

π

Gρ
(2.11)

is called the Jeans length, and represents an upper limit for the scale of non-exploding/imploding density
perturbations. Assuming an ideal gas of particle mass µ and the equation of state p = ρkT/µ, the (isothermal)
speed of sound is given by cs =

(
∂p
∂ρ

)
T

=
√
kT/µ. In that case, eq. (2.11) becomes

λidealJ =

√
πkT

µGρ
. (2.12)

In the above calculations, we assumed the temperature T to be constant even under the emerging perturbation.
This of course requires the cloud to be adequately transparent, for radiation to provide for thermal equilibrium.

Note: The assumption of v, T, ρ (and therefore p,Φ) being constant (homogeneity, isotropy) inevitably leads
to ρ = 0, which at first sight represents a flaw in the above derivation1. A mathematically more rigorous
approach can be found in [3].

2.2 The Virial theorem derivation of the Jeans length

Consider a mass distribution (cloud) of particles with no internal degrees of freedom, density distribution ρ and
Temperature distribution T . From the virial theorem, the time-average kinetic energy 〈Ekin〉 of the system is
given by

〈Ekin〉 = −
〈

1

2

∫
f(r) · r d3r

〉
, (2.13)

where f(r) is the force-density at position r. Assuming that all inner forces of the cloud are of gravitational
nature, we obtain

〈Ekin〉 = −1

2
〈Epot〉 , (2.14)

with 〈Epot〉 being its average total potential energy. Now assume:

(i) The cloud to be in static equilibrium.

(ii) The cloud to be spherical with radius R.

(iii) ρ, T to be constant within its radius.

Then the average kinetic energy of each particle is given by 3
2kT and 〈Ekin〉 = Ekin, 〈Epot〉 = Epot. In particular

Ekin =
4πR3ρ

3
· 3kT

2µ
= 2π

ρ

µ
kTR3, (2.15)

where µ is the particle mass. Similarly,

Epot = −
∫

4πr3ρ

3
· ρG
r
· 4πr2 dr = −16π2

15
Gρ2R5 . (2.16)

1This fact came to be known as the so called Jeans swindle.
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Together with the virial theorem (2.14), eq. (2.15) and (2.16) yield the so called Jeans radius

R = RJ =

√
15kT

4πµGρ
, (2.17)

which represents, for a given density ρ and temperature T , an upper limit for the radius of stable, spherical,
homogeneous mass aggregations. Up to a numerical factor of order 1, it coincides with the Jeans length (2.12)
obtained through linear perturbation theory.

2.3 Hydrodynamic derivation of the Jeans length

We consider a static, spherical mass aggregation of density distribution ρ, Temperature distribution T and
pressure distribution p. We assume that the only forces acting on the particles are gas-presure and gravitational.
The former results in a local, radial force density fp(r) = −dpdr , the later in the force density fg(r) = −m(r)Gρ/r2,
whereas

m(r) :=

∫
r′≤r

ρ(r) d3r (2.18)

is the total mass within radius ≤ r.

dr

Fgrav

Fpress

p

p + dp

dA

r Fgrav

Fpress

R

Fgrav = −m(r)Gρ

r2
dA dr

Fpress = −dp dA

Figure 2.1: Forces acting on a mass-element at central dis-
tance r. Gravitational forces only result from mass located
within r. Pressure forces actually result from a pressure gra-
dient!

Equilibrium of the system implies

−dp
dr

= fp = −fg =
Gm(r)ρ(r)

r2
. (2.19)

Multiplying eq. (2.19) with 4πr3 and integrating both sides, results in

Epot = −
∫
Gm(r)

r
ρ(r) d3r = −

∫
4πGm(r)ρ(r)r dr

(2.19)
=

∫
4πr3

dp

dr
dr

= 4πr3p

∣∣∣∣∞
0︸ ︷︷ ︸

0

−3

∫
p(r) · 4πr2 dr︸ ︷︷ ︸
〈p〉·V

= −3 〈p〉 · V, (2.20)
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with 〈p〉 as the space-average pressure over the system volume V . For an ideal gas of non-relativistic particles
p = ρkT/µ, so that 〈p〉 = 〈ρ〉 kT/µ, and under the assumption of constant temperature T , eq. (2.20) becomes

Epot = −3kT

µ
M, (2.21)

with M as the total mass of the system. Furthermore, eq. (2.16) implies

Epot = −f · GM
2

R
, (2.22)

with f being a numerical factor of order 1, depending on the exact density distribution ρ (f = 3/5 for constant
density). Consequently, (2.21) results in a radius

R =

√
9kT

f4πµG 〈ρ〉 , (2.23)

which is in exact accordance with the results of 2.2, provided ρ = const and thus f = 3/5. But this should
come to no surprise, as the assumptions made in both models were essentially those of an ideal gas, of constant
temperature and density, at equilibrium within a radius R.2

The corresponding limit mass of the aggregation turns out to be

MJ =

(
5kT

µG

) 3
2

·
(

3

4πρ

) 1
2

. (2.24)

It is the maximum mass, at given density ρ and temperature T , a spherical cloud may have without collapsing.

3 Collapse and fragmentation

3.1 The process of collapse

When a cloud of given density ρ and temperature T is large enough, gravitational forces exceed internal pressure
and cause the cloud to collapse. As long as the density ρ of the collapsing cloud remains adequately low for the
cloud to be transparent, the released thermal energy is radiated into the universe and the temperature remains
approximately constant. As eq. (2.24) suggests, this leads to a decrease of the Jeans mass and thus to an
even faster collapse. In particular, sub-sections of the cloud suddenly surpass their own Jeans limit and start
collapsing on their own.

10-100  pc

Figure 3.1: Fragmentation during the collapse of a GMC.

2Note that at one point we assumed ρ to be approximately constant and p ∼ ρT . On the other hand, equilibrium can in fact
only be accomplished in the presence of a pressure gradient, thus ρ 6= const. This should serve as an indication, that the above
results only represent rough estimations.
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This so called fragmentation process may go on and on until the cloud density becomes so high, that radiation can
no longer easily escape and temperature starts to rise. The whole process becomes adiabatic and temperature
behaves as Tp−

2
5 : const, that is, T · (ρk/µ)

− 2
3 : const and consequently

MJ ∼
T

3
2

ρ
1
2

∼ √ρ . (3.1)

This suggests that, as density increases and the process becomes more and more adiabatic, the Jeans mass in-
creases and fragmentation eventually halts. The collapse slows down and may eventually result in the formation
of stars or planets.

3.2 Estimating the maximum fragmentation size

A rough estimation for the minimum fragment size, can be given if one recalls that, for a given temperature T ,
the maximum energy Q radiated from a surface A is that of a grey body, namely

dQmax

dt
= εAσT 4 , (3.2)

with ε . 1 being the emissivity of the cloud. The times scales of the early collapse of a fragment, are comparable
to its free fall time scale, given by

τfree =

√
3π

32Gρ
. (3.3)

It accords approximately to the time needed for the fragment to contract to half its radius, at which point

potential energy of the order ∆E
(2.22)≈ GM2/R would have been released as heat and radiation. In order for

this process to be isothermal, a radiation rate of the order

dQfree

dt
≈
√

8

π
· G

3
2M

5
2

R
5
2

(3.4)

is needed. The process becomes adiabatic, and thus fragmentation halts, when Q̇free approaches the upper limit
in eq. (3.2), that is, when

M ≈
(√

2εσπ2
) 2

5 · R
9
5T

8
5

G
3
5

. (3.5)

Assuming that fragmentation stops, as soon as the Jeans mass MJ becomes equal to this limit mass, we obtain
from eq. (2.24):

Mmin
J ≈ 5

9
4

π
√√

2εσ
· T

1
4 k

9
4

µ
9
4G

3
2

≈ 10√
εσ
· T

1
4 k

9
4

µ
9
4G

3
2

≈ 0.025√
ε
·M� ·

T
1
4

(µ/u)
9
4

K−1 . (3.6)

where u ≈ 1.66 × 10−27 Kg is the atomic mass unit. Assuming µ = 1 u (Hydrogen), the temperature of the
smallest fragment to be 103 K and the clouds emissivity ε ≈ 0.1, we obtain a limit-mass of about M�/2. This
somewhat explains why fragmentation of GMCs typically terminates at the order of solar masses. For a more
thorough treatment of the subject, we refer the reader to Rees[5].
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